A Class of Markov Chains with No Spectral Gap
نویسندگان
چکیده
In this paper we extend the results of the research started in [6] and [7], in which Karlin-McGregor diagonalization of certain reversible Markov chains over countably infinite general state spaces by orthogonal polynomials was used to estimate the rate of convergence to a stationary distribution. We use a method of Koornwinder [5] to generate a large and interesting family of random walks which exhibits a lack of spectral gap, and a polynomial rate of convergence to the stationary distribution. For the Chebyshev type subfamily of Markov chains, we use asymptotic techniques to obtain an upper bound of order O ( log t √ t ) and a lower bound of order O ( 1 √ t ) on the distance to the stationary distribution regardless of the initial state. Due to the lack of a spectral gap, these results lie outside the scope of geometric ergodicity theory [8].
منابع مشابه
Estimating the spectral gap of a trace-class Markov operator
The utility of a Markov chain Monte Carlo algorithm is, in large part, determined by the size of the spectral gap of the corresponding Markov operator. However, calculating (and even approximating) the spectral gaps of practical Monte Carlo Markov chains in statistics has proven to be an extremely difficult and often insurmountable task, especially when these chains move on continuous state spa...
متن کاملweak-reversible Markov chains
The theory of L-spectral gaps for reversible Markov chains has been studied by many authors. In this paper we consider positive recurrent general state space Markov chains with stationary transition probabilities. Replacing the assumption of reversibility by a less strong one, we still obtain a simple necessary and sufficient condition for the spectral gap property of the associated Markov oper...
متن کاملGeometric Ergodicity and the Spectral Gap of Non-Reversible Markov Chains
We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted-L∞ space L V ∞ , instead of the usual Hilbert space L2 = L2(π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space...
متن کاملTaylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملOn the spectral analysis of second-order Markov chains
Second order Markov chains which are trajectorially reversible are considered. Contrary to the reversibility notion for usual Markov chains, no symmetry property can be deduced for the corresponding transition operators. Nevertheless and even if they are not diagonalizable in general, we study some features of their spectral decompositions and in particular the behavior of the spectral gap unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011